1. トップ
  2. レポート・コラム
  3. コラム
  4. 「学び過ぎ」はいけない?

「学び過ぎ」はいけない?

2006年10月06日

井上 学

デ リバティブ理論で重要な役割を果たす「伊藤の補題」は、日本人の基礎的な研究成果と研究者個人の名前が金融界で認識されている事例として有名である。しか し、統計的な予測モデルの理論でも、日本人の研究成果と個人の名前が金融界で認識されていることは、余り知られていないだろう。いうまでもなく、将来の予 測は金融の重要なテーマであり、予測モデルをいかに評価・選択するかは重要な課題である。ここでは、日本人が考案したAICと呼ばれる統計モデルの評価指 標を紹介したい。

AICとは、赤池弘次氏(※1)が1970年代初めに考案した統計モデルの優劣を評価する指 標であり、赤池情報量規準(Akaike Information Criterion)の略である。統計モデルを構築する際には、過去データを用いることになり、得られたデータへのフィッティングの高さが重要である。た だ、パラメータを増やし、過去データに「過度に」適合させた複雑なモデルは、個々のデータのノイズをも取り込んでしまい、逆に予測精度の低下につながって しまう。このような問題を過学習(over fitting)と呼ぶが、AICはこの過学習を加味した指標である。簡便に示すと以下の通りとなり、AIC最小のモデルが、最適なモデルと判断できる。
 

AIC= -2×(モデルの最大対数尤度) + 2×(モデルの自由パラメータ数)
・最大対数尤度:データへのフィッティングを示す。
・自由パラメータ数:モデルの複雑さを示し、ペナルティ項と理解できる。

「歴史は繰り返す」ということばがある。人は過去から学び、不確実な将来へと備えるべきである。ただ、AICの示唆するところは、過去の経験に囚われすぎ ることなく、将来に役立つ本質的な教訓を抽出する姿勢が重要ということだろうか。統計学は無味乾燥な数式の世界に見えるが、人生に役立つ知見も与えてくれ るようである。

(※1)元統計数理研究所の所長。今年の京都賞(基礎科学部門)を受賞している。

このコンテンツの著作権は、株式会社大和総研に帰属します。著作権法上、転載、翻案、翻訳、要約等は、大和総研の許諾が必要です。大和総研の許諾がない転載、翻案、翻訳、要約、および法令に従わない引用等は、違法行為です。著作権侵害等の行為には、法的手続きを行うこともあります。また、掲載されている執筆者の所属・肩書きは現時点のものとなります。

  • このエントリーをはてなブックマークに追加